

Immune-proteo-metabolomic changes link to A β and tau pathology in Alzheimer disease

Meng Wang,^{1,2} Maria Butthut,^{3,4} Jenny Meinhardt,⁵ Carolin Otto,³ Gerardina Gallaccio,^{1,2} Camila Fernández-Zapata,^{1,2,6,7} Matteo Teves,⁸ Claudia Samol,⁸ Katja Dettmer,⁸ Simon Heckscher,⁸ Sakshi Kamboj,⁸ Yozlem Bahar,^{5,9} Christian Conrad,¹⁰ Christian Böttcher,^{1,2} Desiree Kunkel,¹¹ Klemens Ruprecht,³ Friedemann Paul,^{1,2,3,12} Peter J. Oefner,⁸ Helena Radbruch,⁵ Wolfram Gronwald,⁸ Harald Prüß,^{3,4} **Chotima Böttcher**,^{1,2}

¹Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.

²Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.

³Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

⁴German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.

⁵Department of Neuropathology, Charité – Universitätsmedizin Berlin, Berlin, Germany

⁶III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

⁷Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

⁸Institute of Functional Genomics, University of Regensburg, Regensburg, Germany.

⁹Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany

¹⁰Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany

¹¹Flow & Mass Cytometry Core Facility, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

¹²Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.

INTRODUCTION: Tryptophan metabolism is increasingly implicated in Alzheimer's disease (AD), particularly through catabolites acting as aryl hydrocarbon receptor (AhR) ligands that influence neuroinflammation. However, their relationships with core AD pathology-amyloid- β (A) and tau (T) deposition-and associated immune-proteomic alterations remain unclear.

METHODS: We performed integrative multi-omics/high-dimensional profiling of cerebrospinal fluid (CSF) and peripheral blood from A-T- (n=19) and A+T+ (n=35) individuals using targeted metabolomics, mass cytometry, and NULISA-based proteomics, alongside inter-compartmental correlation analysis. Brain-derived tryptophan catabolism was investigated using single-nucleus RNA sequencing (snRNA-seq).

RESULTS: Thirteen differentially expressed CSF proteins in A+T+ individuals correlated positively with tryptophan metabolites and pyroglutamate, and negatively with regulatory T cells, isobutyrate and dendritic cells. Similar patterns were observed in blood. snRNA-seq suggested partial brain origin of metabolites.

DISCUSSION: Our findings highlight conserved immune-metabolic-proteomic signatures in AD and implicate tryptophan metabolism as a cross-compartmental factor relevant for biomarker and therapeutic development.